Dain 4 a d	1 Dar		Subject Code: DDCA020	2
Printed Page:-			Subject Code:- BBCA0202 Roll. No:	<u> </u>
N	OID	A INSTITUTE OF ENGINEERING A	ND TECHNOLOGY GR	EATER NOIDA
11	OID	(An Autonomous Institute Aff		
		BC		,
		SEM: II - THEORY EXAM	*	
	0.11	Subject: Digital l	ogic & Design	36 36 1 400
Time: 3 Hours General Instructions:				Max. Marks: 100
		tructions: that you have received the question po	aner with the correct cours	ve code branch etc
		stion paper comprises of three Section.	-	
		MCQ's) & Subjective type questions.	5 11, 2, 6 6 11 6 6 11 6 6 11 6 6 1	
		n marks for each question are indicated	d on right -hand side of eac	ch question.
3. Illus	strate	your answers with neat sketches wher	ever necessary.	
		uitable data if necessary.		
U		ly, write the answers in sequential orde		. 1
		should be left blank. Any written mater	rıal after a blank sheet will	not be
evaiua	iea/ci	hecked.		
SECT	ION-	-A		20
		all parts:-		
1. Auc.	•	he term in SOP are known as: (CO1,K		1
1-a.		·	1)	1
	(a)	Maxterm		
	(b)	Minterm		
	(c)	Midterm		
	(d)	Sumterm		
1-b.	In	n binary addition if we add 1+1, so sum	= (CO1,K1)	1
	(a)	0		
	(b)	1		
	(c)	01		
	(d)	10		
1-c.	T	he combination of two half adders is a:	: (CO2,K1)	1
	(a)	Delay		
	(b)	Half adder		
	(c)	Full Adder		
	(d)	Half subtractor		
1-d.	` ,	a combinational circuit that takes mul	tiple input and gives only	1 1
		utput (CO2,K1)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-
	(a)	MUX		
	(h)	DEMUX		

	(c)	Decoder				
	(d)	Encoder				
1-e.	T	he basic building block of a sequential circuit is: (CO3,K1)	1			
	(a)	Latch				
	(b)	Litch				
	(c)	Buffer				
	(d)	Flip-flop				
1-f.		we have to make a MOD-6 counter then, the number of flip- flop required : (CO3,K1)	1			
	(a)	0				
	(b)	1				
	(c)	3				
	(d)	5				
1-g.	A	computation model that can be used to simulate sequential logic (CO4,K1)	1			
	(a)	Combinational circuit				
	(b)	Sequential circuit				
	(c)	Finite State Machine				
	(d)	Non finite machine				
1-h.	Requires less number of states: (CO4,K1) (a) Melay machine (b) Moore machine (c) Static					
	(a)	Melay machine				
	(b)	Moore machine				
	(c)	Static				
	(d)	None				
1-i.	II	IIoT stands for: (CO5,K1)				
	(a)	Intense internet of things				
	(b)	Industrial Internet of Things				
	(c)	Incorporate internet of things				
	(d)	Index industry of things				
1-j.		the programming language is used by Arduino IDE IoT software for writing odes is: (CO5,K1)	1			
	(a)	Java				
	(b)	C/C++				
	(c)	Python				
	(d)	JavaScript				
2. Att	empt a	all parts:-				
2.a.	C	onvert the decimal number 24 into binary. (CO1,K1)	2			
2.b.	D	raw a neat and clean block diagram of Combinational circuit. (CO2,K1)	2			
2.c.	C	construct the excitation table for SR flip flop. (CO3,K1)	2			

2.d.	Define state table. (CO4,K1)	2
2.e.	Mention the characteristics of IoT. (CO5,K1)	2
SECTI	ON-B	30
3. Ansv	ver any <u>five</u> of the following:-	
3-a.	Perform 146+274 in BCD. (CO1,K2)	6
3-b.	Discuss weighted code with suitable examples. (CO1,K1)	6
3-c.	Explain full adder in detail. Also derive the boolean expression for sum and carry. (CO2,K1)	6
3-d.	Differentiate between MUX and DEMUX. (CO2,K1)	6
3.e.	Realize D flip flop using T flip flop. (CO3,K2)	6
3.f.	Explain Dynamic hazard with help of an example. (CO4,K1)	6
3.g.	Define smart objects and its characteristics. (CO5,K1)	6
SECTI	ON-C	50
4. Ansv	ver any <u>one</u> of the following:-	
4-a.	Simplify the function using K-Map : F (w,x,y,z) = \sum (0,1,2,3,7,8,10) , d (w,x,y,z) = \sum (5,6,11,15) (CO1,K2)	10
4-b.	Generate the hamming code for 1001 using even parity. (CO1,K2)	10
5. Ansv	ver any <u>one</u> of the following:-	
5-a.	Implement a full adder circuit using two 4:1 multiplexers. (CO2,K2)	10
5-b.	Design a combinational circuit which converts the BCD to Excess-3 code. (CO2,K2)	10
6. Ansv	ver any one of the following:-	
6-a.	Discuss shift registers, mention its types and also write the applications of shift registers. (CO3,K1)	10
6-b.	Design a 4 bit synchronous counter using D flip flop. (CO3,K2)	10
7. Ansv	ver any <u>one</u> of the following:-	
7-a.	Explain the following: a)State Diagram b)Transition matrix with the help of example. (CO4,K1)	10
7-b.	Construct a state and transition diagram for '101' sequence for melay machine. (CO4,K2)	10
8. Ansv	ver any <u>one</u> of the following:-	
8-a.	Draw a neat and clean diagram of Node MCU board, also explain its working. (CO5,K1)	10
8-b.	Explain how a Arduino interface with LED. (CO5.K1)	10